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APPLICATION OF AUTOMATIC CLUSTERING
TO EMITTER IDENTIFICATION

1. INTRCODUCTION

Research in and applications of art{ficial intelligence 4] are
the main thrusts of the Computer Science Laboratory, Comminications
Sciences Division, Naval Research laboratory. At present, we are work-
ing on phoneme recognition for a low band width tpeech communicaticn
svstem, a computer-controlled manipulator, and {ntelligent data base
management system, as well as automatic clustering and {ts application
to emitter identification. In this paper, we shall focus on the auto-
matic clustering work. The goal of clustering [1,2,3,5,6] is the par-
tioning of a given set of objects into subsets called clusters in such
a vay that the objects {n a cluster are similar to one another and that
objects in different clusters are dissimilar. Two objects may be con-
sidered similar 1f, for example, the euclidean distance between them {n
the measuremen: (feature) space is small. ‘ '

Clustering has two main purposes. First, clustering may help in
getting a more or less direct understanding of the relationships among
the objects. Second, clustering may be useful as a first step in
pattern recognition. In pattern recognition (unlike clustering), each
presented object must be labeled with its class membership. After
clustering (with labels ignored), one can "look at" the data to estimate
wvhether pattern recognition will be easy or difficult, whether a giv-n
class should be combined with another class or divided into two or more
classes, etc.

Since clustering is quite general, it has many spplications. Later
we shrall see that clustering can be applied to emitter identificatiom.
It can be applied to sutomatic phoneme recognition and personnel ciassi-
fication. It is often very important to find a cluster having only one
member. Such a cluster may be a mistake in the cata base or represent
a very unusual object, An unusual use of a computer system may be an
attempted security penetration,

2. CLUSTERING THE EMITTER TDENTIFICATION DATA

Each row in Table 1 is a sample (object) representing 18 measure-
ments of an emission. Our sponsor gave us 18 samples. Without knowing
anything else about the data, we applied several clustering techniques,
some of which we had developed [2,5,6]}. We obtained the following four
clusters:

1y 1,2

2 3,5,6,7,9, 10, 11

(3) 4, 17, 18

%) 8, 12, 13, 14, 15, 16
This means that samples (rows) 1 and 2 are in cluster (1), etc.
Note: Manuscript submitted October 29, 1976.
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Our sponsor then told us that the '"real" clusters should be as follows:

1’y 5,6, 10, 11
(2'y 4, 17, 18

(3') 3, 7,9 |

@'y 1,2,8, 12,13, 14, 15, 16

Thus, the results were quite good, Careful analysis of the data
revealed the following:

(a) If cluster (1) has to be combined with any other cluster,
it should be combined with cluster (4). However, cluster
(1) is definitely different from cluster (4).

(b) From only the given data, one really cannot say that
cluster (1') and cluster (3') should be two clusters
rather than being combined into one cluster,

Our sponsor agreed with both of these statements,

We were then supplied with 12 new samples (rows) with some missing
values, (See Table 2). After using various clustering methods, we con-
cluded that A, B, C, D, E, and F belong to cluster (l1'), that G, H, and
I belong to (2'), and that J, K, and L belong to efther (1') or (3').
Then our sponsor told us that the first two conclusions are absolutely
correct, He said that samples J, K, and L belong to cluster (3'). We
could say only that they belong to either (1') or (3'), because (1')
and (3') are so close to each other,

3. TWO CLUSTERING METHODS

Two of the six clustering wethods we used are data reorganization
(5] and two principal components [1,3]. The other four are minimal
spanning trees {1,3], non-linear mapping [6], and two versions of a \
triangulation method [2]. We do not describe these herz, since they ,
are fairly complicated to explain and are described elsewhere, In data
reorganization, rows (and sometimes columns as here) are permuted to |
put similar rows (aud columns) together. (Two n-tuples are similar to :
the extent that the n~dimensional distance between them is small.) The i
result for the 18 samples is shown in Table 3, After this reorganiza-
tion was done, the sponsor told us the classes, Table 3 is perfect in
the sense that it could be broken between rows irto four parts, each
exactly corresponding to a given class. We also used the reorganiza-
tion by rows for automatically obtaining the clustering hierarchy shown
in Fig. 1. Table 3 is broken into two tables b, lividing between the
rows whose distance apart is largest., These cabli s are divided further,
etc, Partly on this hierarchy, we obtained *he clusters (1) through
(4) given earlier.
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Fig. 1 — Clustering hierarchy from data reorganization by row;
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Fig. 2 — Principal components




In the method of two rrincipal components, the data is projected
from an 18 dimensional space onto the 'best” plane (two dimensional
space). The resul: for our data is shown {n Fig. 2. Each of the two
sxes 13 a linesar combination of the orizinal 18 features, Again we see
that the resultes are good. Partly based on Fig., 2, we obtained clustevs
(1) through (4) given earlier,

4. FUTURE WORK

Our spousor will give us a much larger set of data, and we are
looking forverd to aocalyzing {t. We hope that the rasults will continue
to be favorable. We shall also be applying clusterinz techniques to
automatic phuneme recognition and intelligent data base management

systems,
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